
IT Department

Department of Software Engineering
Software and database engineering

Antoni Malinowski
Album number s20824

How to efficiently connect people online? Implementing a social
media platform that fosters software maintainability and

collaboration between developers.

Diploma
Written under the direction
mgr inż. Maciejewska Katarzyna

Warszawa 2024

1

Wydział Informatyki

Katedra Inżynierii Oprogramowania
Inżynieria Oprogramowania i Baz Danych

Antoni Malinowski
Numer albumu s20824

Jak skutecznie łączyć ludzi w Internecie? Implementacja
platformy społecznościowej, która ułatwia utrzymywanie
oprogramowania i współpracę pomiędzy deweloperami.

Praca inżynierska napisana pod
kierunkiem:
mgr inż. Maciejewska Katarzyna

Warszawa 2024

2

Abstract

Since the early 2000s, many social media platforms have been launched. The purpose
of these applications is to provide users with a space to share opinions and meet new people
with similar interests. Platforms like Instagram, Facebook, or X (previously Twitter) all use
very similar approaches to sharing content. The idea focuses on creating connection
opportunities for users who upload multimedia content (text, images, videos), comment on
each others’ posts and follow like minded accounts.

In recent years, new platforms serving similar purposes have arised. Mastodon or Odysee
serve the same purpose of connecting its users, but they have fundamentally different
backbone architecture of their service. They are fully or partially open-sourced and their
focus is greatly put on users’ privacy, decentralization and the P2P nature of the platform.

The purpose of this paper is to present a modern approach to running and using social media
platforms. This approach comes directly from the evolution that the internet has been going
through for the past years and comes down to openness, transparency, accessibility and
privacy.

This paper goes through some of the problems that social media platforms face today, how
developers approach to solve them and what are the different challenges that may arise when
using such platforms.

Moreover, the author proposes an implementation of such a social platform, describing its
core functionality, challenges and plans for further development.

Keywords: software, connecting people, React, Docker, social media, collaboration,
maintainability, open-source

3

Abstrakt

Od początku lat 2000. wiele platform mediów społecznościowych zostało
uruchomionych. Celem tych aplikacji jest zapewnienie użytkownikom przestrzeni do
dzielenia się opiniami i poznawania nowych osób o podobnych zainteresowaniach. Platformy
takie jak Instagram, Facebook czy X (dawniej Twitter) stosują podobne podejście do
dzielenia się treściami. Pomysł ten skupia się na daniu możliwości nawiązywania połączeń
przez użytkowników, którzy dzielą treściami multimedialnymi (tekst, obraz, wideo),
komentują posty innych oraz obserwują podobne konta.

W ostatnich latach pojawiły się nowe platformy służące podobnym celom. Mastodon czy
Odysee mają ten sam cel łączenia użytkowników, lecz różnią się fundamentalnie na poziomie
architekturalnym. Posiadają w pełni lub w części otwarty kod źródłowy i kładą duży nacisk
na prywatność użytkowników, decentralizację oraz charakter P2P (bezpośrednich połączeń
pomiędzy użytkownikami.

Celem niniejszej pracy jest przedstawienie nowoczesnego podejścia do prowadzenia platform
społecznościowych oraz korzystania z nich. Podejście to wynika bezpośrednio z ewolucji,
przez którą przechodził internet w ostatnich latach i sprowadza się do otwartości,
przejrzystości, dostępności i prywatności takiego rozwiązania.

Praca ta przeanalizuje niektóre z problemów, z jakimi borykają się dzisiaj platformy
społecznościowe, jak deweloperzy podchodzą do ich rozwiązywania oraz jakie różne
wyzwania mogą pojawić się podczas korzystania z takich platform.

Ponadto autor proponuje implementację takiej platformy społecznościowej, opisując jej
podstawową funkcjonalność, wyzwania i plany dalszego rozwoju.

Słowa kluczowe: oprogramowanie, łączenie ludzi, React, Docker, media społecznościowe,
współpraca, utrzymywanie, otwarte źródło

4

Introduction...6
The structure of the diploma...7
Dictionary of technical terms..8

1. Overview of the problem..10
2. The case for modern interaction... 13
3. Technologies used for the implementation of the project..13

3.1. JavaScript...13
3.2. React.. 14
3.3. Node.js... 14
3.4. Express...14
3.5. Multer.. 14
3.6. Postgres..15
3.7. Docker..15

4. Platform architecture... 15
4.1. Backstory of JavaScript and Node runtime... 15
4.2. ShaReCon architecture.. 16

4.2.1. Platform architecture.. 16
4.2.1.1. Functionalities Use Cases diagram..19
4.2.1.2. Sequence diagrams.. 22

5. Platform implementation... 25
5.1. Open-source code.. 25
5.2. React frontend..25

5.2.1. Account creation...26
5.2.2. Signing in..33
5.2.3. Posting content..36
5.2.4. Deleting content..40

5.3. Database choice... 40
6. The future of the platform... 44

6.1. A detailed look at the rising technologies..44
6.1.1. Web vs mobile.. 44
6.1.2. Decentralized vs centralized... 45
6.1.3. P2P sharding vs compression... 46
6.1.4. UX vs UI...47

6.2. Observation vs participation.. 47
7. Summary... 48
Bibliography..49

5

Introduction

Today, social media giants like Facebook, Instagram or Twitter play a leading role in the way
we communicate with each other online. They amass billions of users every month. Their
business and architecture models are ones to look up to as an aspiring developer as they often
serve as a blueprint for how to create successful social media.
On the other hand, there is a social platform called StackExchange (with its most famous
child - StackOverflow as presented on Figure 1) which gathers millions of passionate people
and experts, keeping the main focus of sharing useful knowledge and strictly keeping the
threads relevant to the main discussion.

Figure 1. Stack Overflow [1]

In recent years however, with the users’ growing interest in privacy, ownership and
inclusiveness platforms like Mastodon with its open-source and decentralized nodes, Odyssey
implemented on LBRY blockchain as presented on Figure 2 and other similar sites have been
created. The people of the internet have been visibly concerned about their online activity and
seem to care what’s the underlying philosophy and architecture of applications they use.
For this reason, it is important to present one's own approach to building online communities.
For when more ideas are present, the greater options we, as users, have in choosing the right
suite. More solutions also create opportunities to step back and think about the essence of
what makes social activity pleasant. Coming back to the core problem and tacking it allows
the creation of better products and services.

6

Figure 2. Odysee [2]

The structure of the diploma

The diploma thesis has been divided into four parts.
In the first part, the author identifies the problems associated with traditional social media
platforms. This section also delves into the modern approach and examines how the
software's accessibility plays a pivotal role in shaping the final product.
The second part builds a compelling case for modern interaction, expanding the scope from
conventional social media activities to collaborative product development and active user
contributions to the platform.
The third part is focused on a detailed breakdown of the current state of the proposed
open-source social media platform. This chapter is primarily dedicated to the technical
analysis of the author's solution, providing a clear rationale for the use of featured
technologies.
In the last, fourth part, the author reflects on potential future developments for the platform
and discusses the incorporation of technologies that could be integrated into the code. The
author lays out the motivation behind choosing specific technologies over others, establishing
a foundation for introducing a list of promising technologies that could enhance the current
tech stack in the foreseeable future.

7

Dictionary of technical terms

Below is the dictionary describing technical terms used throughout the paper.
Dictionary serves the purpose of briefly describing terms that some of the readers may not be
familiar with but are willing to follow along with the paper.

Acronym Full name Definition

ShaReCon Share, Reference,
Connect

social media platform for sharing content between
users

VS Code Visual Studio Code source-code editor made by Microsoft with the
Electron Framework, for Windows, Linux and
macOS.

JS Javascript high-level programming language that is one of the
core technologies of the World Wide Web

AWS Amazon Web
Services

cloud computing platform by Amazon offering
(alongside other products) storage buckets,
compute instances and a messaging queue

- LBRY blockchain-based digital content distribution
platform and protocol

S3, bucket Simple Storage
Service

service offered by AWS that provides object storage
on the cloud through a web service interface

React React.js or ReactJS free and open-source front-end JavaScript library
for building user interfaces based on UI
components

Node Node.js open-source back-end JavaScript runtime
environment, runs on the V8 JavaScript Engine,
and executes JavaScript code outside a web
browser

Express Express.js back end web application framework for building
RESTful APIs with Node.js. It is designed for
building web applications and APIs

- Multer “Multer is a Node.js middleware for handling
multipart/form-data, which is primarily used for
uploading files”[3]

API Application
Programming
Interface

a way for two or more computer programs to
communicate with each other

UI User Interface space where interactions between humans and

8

computer programs occur - simply what the user
sees as the final product of development

URL Uniform Resource
Locator

reference to a web resource that specifies its
location on a computer network and a mechanism
for retrieving it (colloquially termed as a web
address)

MVP Minimum Viable
Product

version of a product with just enough features to be
usable by early customers who can then provide
feedback for future product development

P2P Peer-to-peer distributed application architecture that partitions
tasks or workloads between peers. Peers are equally
privileged, equipotent participants in the network

GUN GUN.js, gunDB,
GUN ecosystem

GUN is an ecosystem of tools that let you build
community run and encrypted applications

CDN Content Delivery
Network

geographically distributed network of proxy servers
and their data centers

WebRTC Web Real-Time
Communication

free and open-source project providing web
browsers and mobile applications with real-time
communication via APIs

RAD Radisk Storage
Engine

“in-memory, as well as on-disk radix tree that saves
the GUN database graph for fast and performant
look-ups. Radix trees have a constant
lookup-time”[6]

IPFS InterPlanetary File
System

protocol, hypermedia and file sharing peer-to-peer
network for storing and sharing data in a distributed
file system

- Neo4j graph database management system; an
ACID-compliant transactional database with native
graph storage and processing

psql PostgreSQL open source object-relational database system

sql Structured Query
Language

structured query language used mainly for querying
databases, schema and records creation and
database administration and management

- Docker Development tool used to create isolated
environments for applications without the need for
installing libraries and tools locally.

9

1. Overview of the problem

The proprietary nature of platforms like Facebook, Instagram, and Twitter (prior to the
overtake that happened in 2022) often places a heavy emphasis on shaping the public
dialogue. This approach is not flawed by itself only when it takes into consideration users’
wellbeing and free speech culture cultivated at every stage of the product development. These
platforms, driven by the principles of surveillance capitalism, have been known to collect vast
amounts of user data, often without explicit consent, and leverage this data to create highly
personalized, intrusive advertisements and manipulate the perception of ongoing political and
socio-economic events. The consequences of such data practices have raised concerns
regarding user privacy, the ethical boundaries of data usage and free speech limitations.
Closed-source proprietary platforms are by definition not designed for user’s privacy and fair
treatment designed and controlled by an organization, where the source code is not available
to the public for viewing, modification, or redistribution.. This opacity extends to algorithms
that determine what content users see, how moderation decisions are made, and the criteria
for banning or suspending user accounts. This lack of transparency leaves users in the dark
about the rules and policies governing their online interactions, raising questions about
accountability and the potential for bias in content moderation.
On the contrary to proprietary software, open-source social media or software in general
embrace transparency by the very definition. Their source code is accessible to anyone,
allowing users to inspect the inner workings of the platform and verify that data handling is in
line with their expectations. This transparency fosters trust and accountability within the
community.

10

Great example of such transparency is the community notes functionality of X as presented
on Figure 3. Community notes serve the role of a fact checking system that aims to verify
whether the information posted on X are truthful or misleading in any way. (The global
rollout of Community Notes has occurred in December 11, 2022 when the platform was still
known as Twitter)

Figure 3. Community Note written under a post [4]

11

As visible on Figure 4, Community Notes code is open-source and available for transparent
examination.

Figure 4. GitHub repository for Community Notes [5]

All software is vulnerable. Both flaw and power of proprietary software comes from the same
source - its closed control. The closed-source model offers a tightly managed development
lifecycle. This allows for rigorous testing and security measures to ensure the product is safe
and stable before it’s released for the general public. However, it also means that the
responsibility for identifying and addressing vulnerabilities rests solely with the company that
owns and controls the software.
In contrast, open-source software leverages the collective expertise and vigilance of a global
community of developers, enhancing the capacity to rapidly identify and resolve security
issues. This collaborative approach fosters a culture of continuous improvement and security
in open-source projects.

12

2. The case for modern interaction

In the digital age, the concept of "interaction" has evolved far beyond typical user
engagement on social media platforms. While traditional social media focuses on the
interactions between individuals, the modern understanding of interaction extends its meaning
to encompass a broader and more profound scope. This evolved perspective acknowledges
that interaction is not only about connecting with friends, sharing photos, or posting status
updates but also includes the collective effort required for fostering, maintaining, and
developing software-social platforms.
Modern software aims to foster a sense of community and collective growth among users.
Modern software encourages active participation in project creation, which goes far beyond
liking and sharing. Even platforms like Stack Overflow and Youtube foster the sense of
participation by rewarding users’ activity with badges and trophies. This simple way of
engaging people extends to individuals contributing their expertise, time, and ideas towards
the collective development of a platform that reflects their values and priorities. By fostering
the sense of participation and inclusiveness users are encouraged to speak their minds freely
without the fear of deplatformation. By creating a space where users can actively participate
in the development process, modern interaction not only redefines the relationship between
users and technology but also empowers individuals to take an active role in shaping their
digital environment. This empowerment, in turn, serves as a catalyst for a more democratic,
user-focused, and transparent approach to social media and software development.
In the subsequent sections of this thesis, we will delve deeper into the practical
implementation and impact of this modern understanding of interaction, exploring how it can
enhance the social media landscape and empower users to take control of their digital
footprint.

3. Technologies used for the implementation of the project
3.1. JavaScript

JavaScript is a high-level programming language primarily used in web development.
It solved the problem developers had if they wanted dynamic content for their HTML and
CSS driven website. Initially designed for client-side web applications, JavaScript has
evolved to include server-side applications through environments like Node.js. JavaScript is
single-threaded by design. However, JavaScript is also non-blocking, asynchronous, and
concurrent. This might seem contradictory, but JavaScript achieves this by using an event
loop and a call stack. JavaScript's compatibility with major browsers, along with its support
for event-driven, functional, and imperative programming styles, makes it a fundamental tool
in modern web development. Its ecosystem is rich in various frameworks and libraries that
can be used for efficient UI design, computer graphics and even game development.

13

3.2. React

React is an open-source, front-end library developed by Facebook, widely recognized
for its role in simplifying the creation of interactive user interfaces. React uses
component-based architecture which enables developers to build reusable UI components,
leading to more efficient code management and easier debugging. React uses virtual DOM
feature, which optimizes rendering and improves application performance by minimizing
direct manipulation of the DOM. React's unidirectional data flow ensures a more predictable
state management, making it easier to track changes and debug. As a JavaScript library, React
implements single threaded design with the possibility of using asynchronous features.

3.3. Node.js

Node.js, created by Ryan Dahl in 2009, is a free, cross-platform JavaScript
environment used for executing web applications outside of a browser. It uses Google's V8
engine and the libUV platform abstraction layer, Node.js provides developers with a robust
suite of tools for the non-blocking, event-driven I/O model. This makes it both efficient and
easy to handle heavy-in-data applications through its asynchronous, event-driven architecture.
Node.js excels as a server-side proxy, capable of managing numerous simultaneous
connections efficiently without blocking. It's particularly effective in scenarios like proxying
various services with different response times or aggregating data from multiple sources.
Node.js is built using Google's V8 JavaScript engine, the libUV layer, and its core library is
written in JavaScript.

3.4. Express

Express.js, often referred to simply as Express, is a minimalistic and flexible Node.js
web application framework that provides a robust set of features for web and mobile
applications. It is known for simplifying the server-side scripting process through its
numerous middleware modules, enabling easy management of HTTP requests and responses.
Express streamlines the routing of web requests, providing a more efficient way to handle
different HTTP verbs and URLs, and thus facilitating the development of both web
applications and RESTful APIs.

3.5. Multer

Multer is a middleware for Node.js that facilitates the handling of file uploads in web
applications. It is specifically designed for use with Express.js and is widely used for
managing multipart/form-data, which is primarily used for uploading files. Multer provides
an easy and flexible way to upload files to the server by adding a body object and a file or
files object to the request object (req). This makes it intuitive to access the uploaded files and
their respective metadata.

14

3.6. Postgres

PostgreSQL, often referred to as Postgres, is an advanced, open-source relational
database management system (RDBMS) known for its reliability, robustness, and
performance. It offers a comprehensive range of features to securely store and scale the most
complicated data workloads. Postgres supports advanced data types and performance
optimization features, making it suitable for handling large volumes of data with high
concurrency.

3.7. Docker

Docker is an innovative platform that changes the way software is developed and
deployed. It utilizes containerization technology to package applications and their
dependencies into a single, lightweight unit called a container. This approach ensures
consistency across multiple development, testing, and production environments, and
simplifies configuration. Docker containers are isolated from each other and the host system,
making them secure and efficient. They can run on any machine that has Docker installed,
regardless of the underlying operating system, leading to significant improvements in
portability and scalability.

4. Platform architecture
4.1. Backstory of JavaScript and Node runtime

“JavaScript was created in 1995 by Brendan Eich with the goal of adding an easy to
learn scripting language to the Netscape browser. It is most well known for building front-end
web applications because it is the only language (other than WebAssembly) that is natively
supported in browsers.”[6][7]
In September of 2008 Google Chrome introduced the V8 engine. V8 engine completely
changed the way JavaScript was executed by introducing just-in-time (JIT) compilation.
Unlike traditional interpreters that execute code line-by-line, or ahead-of-time compilers that
compile the code before execution, V8 compiles JavaScript directly to native machine code at
runtime. This approach significantly improves performance by reducing the execution time.
This made it a viable option for high performance applications both in the browser and
server-side.
In May of 2009, Ryan Dahl introduced Node.js - a server-side runtime for JavaScript built on
top of V8 that included an event loop. This was a unique concept for the time and allowed
you to write event-driven non-blocking code. Because of these characteristics Node.js became
known as a great solution for building real-time web applications that scale and it also made it
possible for developers to build their entire web application stack with a single programming
language.

15

Today, techstacks like PERN stack (Postgres, Express, React, Node) or MEAN stack
(MongoDB, Express, Angular, Node) allow you to build an entire application using a single
programming language - JavaScript and a database of your choice.

4.2. ShaReCon architecture

4.2.1. Platform architecture

For ease of accessibility the platform was decided to be a web application. The frontend has
been implemented in React, a JavaScript library. The backend has been made with Node.js
which is a JavaScript runtime environment and TypeScript, a superset of JavaScript. Database
of choice is Postgres.
As mentioned before, the focus was put into accessibility and ease of development of the
platform. Therefore, all of the crucial parts - frontend, backend and database has been
containerized using Docker. Docker allows for packaging and running applications regardless
of the host environment.
By creating isolated environments for the application developers can run them on any device
without the need to set the environment up manually. As Docker comes with a wide variety of
so-called images - packages that can be downloaded into an isolated docker system, it is very
easy to set up such a reusable system with a single script as shown on Figure 25 and 27.
Using Docker, the author prepared scripts with such dedicated environments that can be
reused by developers and ultimately ease both the development process and developer
collaboration. During the initialization of the platform it is sufficient to run a single startup.sh
script as seen on Figure 22 which will execute the three necessary docker-compose files
(Figure 23, 24, 26) that are the backbone of the platform's docker engine.

16

As presented on Figure 5, the platform architecture consists of frontend, backend and
database all containerized using Docker technology.

Figure 5. Platform architecture (visualized with LucidChar - source: author’s work)

17

As presented on Figure 6a, the directory structure of the project consists of frontend and
backend code. The database configuration is included inside of the backend directory.

Figure 6a. Directory structure (presented with VS Code - source: author’s work)

18

As presented on Figure 6b, the platform is clearly divisible between frontend and backend. At
the same time it is easy to setup both of the environments using the startup/setup script
presented on both Figure 6a and Figure 22.

Figure 6b. Directory structure (visualized with LucidChart - source: author’s work)

4.2.1.1. Functionalities Use Cases diagram

The following diagram describes the use cases for feed activities for different user roles.
There are two roles - Viewer and User. They are differentiated by the presence of active
cookie token in the browser. Viewer has not been authenticated and therefore is treated as an
anonymous user. User, on the other hand, has been authenticated and has a valid token
corresponding to the token in the browser.

19

As presented on Figure 7a and 7b, there is a clear difference between what React and other
technologies provide and what has to be implemented to make the platform work both
efficiently and effectively.

Figure 7a. Functionalities use case diagram (visualized with LucidChart - source: author’s work)

20

Application that has no underlying implementation of crucial functionality has no practical
use for users. Presented below Figure 7b, marks in red what has been implemented by the
author to make the platform work

Figure 7b. Functionalities use case diagram implemented by author (visualized with LucidChart - source:
author’s work)

Functionalities of displaying content on the User Interface can be easily handled with React.
However, all interaction that is performed on the website that involves modifying both its
content and the database records must be implemented as it is later described.

21

4.2.1.2. Sequence diagrams

Figure 8, presents the sequence of actions that need to be performed in order to post new
content to the website.

Figure 8. Sequence diagram for adding new post (visualized with LucidChart - source: author’s work)

Below is presented the basic flow of action as seen on diagram from Figure 8.

22

Use case Adding new post

Description User wants to add a new post

Actors User

Goals Add new post, display updated feed

Pre-conditions User is logged in, System is up and running

Post-conditions User adds new post and displays the updated feed

Basic flow 1. Actor fills in the “Post prompt” with text and submits the
post by clicking "Submit" button

2. System refreshes the page and shows updated main feed

Figure 9, presents the sequence of actions that need to be performed in order for the Viewer to
be registered on the platform. The next page includes the basic flow of the action.

Figure 9. Sequence diagram for registering new user (visualized with LucidChart - source: author’s work)

23

Below is presented the basic flow of action as seen on diagram from Figure 9.

24

Use case Registering new user

Description Viewer wants to register

Actors Viewer

Goals Create account

Pre-conditions System is up and running

Post-conditions Viewer creates account and becomes User

Basic flow 1. Actor clicks "Sign up here" button
2. System redirects viewer to signup form and asks for name,

surname, email, username password and password
confirmation

3. Viewer enters credentials and submits the signup form
4. System has registered the actor.

Alternative subflow 3a. System notifies viewer that username is taken and asks the
actor to choose different username

5. Platform implementation
5.1. Open-source code

The platform is fully open-sourced and available on github. However, the project is
not Libre meaning Free to use. This is important because despite the code being open for
display it cannot be reused until there is appropriate license included.
Figure 10 presents the code repository of the platform hosted on Github.com.

Figure 10. Project repository on github (source: author’s work published on github [8])

5.2. React frontend

Application UI was done using the latest React version. According to the 2022 Stack
Overflow Developer Survey, React is the most wanted web technology to learn with 68.19%
(15 873 responses)[9] satisfaction rate. In the State of JavaScript 2021 survey React placed
first in the usage category with 80% usage rate (out of 16 085 respondents)[10].
Blindly following trends is not advisable for building any computer program, however
surveys like these provide insight into the current state of the IT industry (at least a part of the
industry).
React was developed at Facebook in 2013 and has amassed a massive community around
itself since then. This is often a good reason to choose a technology for a stack because there
is a pool of resources to refer to maintained by a large number of actively working
developers. The library’s main purpose is to help with building components as reusable parts
of the UI. Component in React is just a JavaScript function whose return value is a special
syntax called JSX - composition of HTML and JS.

25

5.2.1. Account creation

React itself is a great library for utilizing reusable components, but it only helps with
the UI design and efficiency as shown on the functionalities use case diagram as presented on
Figure 7a. To implement the functionality of account creation it is mandatory to provide
necessary functionality for handling user authentication as shown on the diagram 7b.

Anyone who wants to actively contribute to the platform can create an account. To do
so, a person can navigate to the signup page, by first opening the login form. From there, by
clicking the Sign up here link, we are navigated to the Signup form.
Figure 11a displays the graphical user interface of the login form.

Figure 11a. Log in form (project implementation, localhost:3000/login - source: author’s work)

Figure 11b shows the graphical user interface of the signup form.

Figure 11b. Sign up form (project implementation, localhost:3000/signup - source: author’s
work)

26

To create an account we are required to fill in the form with basic personal information like
first name, last name, email and password. Additionally, users are asked to confirm their
password input with the Confirm Password field, which increases the correctness of the
provided password.

As shown on Figures 11b, 12 and 13 sign up form requires providing:
➔ valid email address (regex validation)
➔ valid username (regex validation & available username)
➔ valid password (regex validation)
➔ password confirmation (matching password)

Figure 12. Checking availability of the username (project implementation, source code - source: author’s work)

Figure 13. Regex patterns for sign up form (project implementation, source code - source: author’s work)

27

As shown on Figure 14a, if the username to be registered is already taken - present in the
database, the system clearly notifies about it. Person should then enter a different username.
Figure 14b, shows the source code behind this functionality.

Figure 14a. Invalid sign up form (project implementation with developer tools opened on application/cookies,
localhost:3000/login - source: author’s work)

28

Figure 14b. Handling authentication on the backend (image generated with https://carbon.now.sh/; project
implementation of the authentication mechanism, localhost:3001/login - source: author’s work)

29

https://carbon.now.sh/

The authentication is handled on a different API route than other functionalities as shown on
Figures 15a, 15b, 15c, 15d and 15e. This is necessary because it is a good software
engineering practice to differentiate between the authentication functionality (signing in,
signing up, routes access authorization) and usability function (posting content, deleting
content, changing profile settings etc)

Figure 15a. Specifying API routes for authentication endpoints (project implementation of the server side -
source: author’s work, screenshot of the source code)

Figure 15b. Specifying API routes for account functionalities endpoints (project implementation of the server
side - source: author’s work, screenshot of the source code)

30

Figure 15c. Specifying API routes for comment functionalities endpoints (project implementation of the server
side - source: author’s work, screenshot of the source code)

Figure 15d. Specifying API routes for post functionalities endpoints (project implementation of the server side -
source: author’s work, screenshot of the source code)

31

Figure 15e. Server configuration on the backend (image generated with https://carbon.now.sh/; project
implementation of the server side - source: author’s work)

32

https://carbon.now.sh/

5.2.2. Signing in

If the user already has an account he can sign in directly from the Sign in form by
providing his credentials. Once the user successfully logs in (or creates an account), a token is
created based on his credentials and stored both in the cookies section of the browser and in
the database. After successful authentication, the user gets redirected to the home page.
As shown on Figure 16a, the username record includes the username and updated token - the
same as in the browser window -> developer tools -> application -> cookies (as shown on
Figure 16b).

Figure 16a. Updated token in the database (project implementation pgadmin panel, localhost:5050 - source:
author’s work)

Figure 16b. Cookie token present in the browser after successful sign in (project implementation with developer
tools opened on application/cookies, localhost:3000/login - source: author’s work)

Handling of the Account functionality was implemented entirely from scratch (as shown on
the Figure 16c, 16d) as there is no sufficient tool that automates this development process.
Only the approaches that utilize containerization - like Docker, allow for easier deployment
and connection between backend and database.

33

Figure 16c. 1/2 part of the accountController functionality (image generated with https://carbon.now.sh/; project
implementation - source: author’s work)

34

https://carbon.now.sh/

Figure 16d. 2/2 part of the accountController functionality (image generated with https://carbon.now.sh/; project
implementation - source: author’s work)

35

https://carbon.now.sh/

5.2.3. Posting content

To post to the main feed and make comments under posts, users must be logged in first
(Figures 17, 18). Every successful sign in and sign up, regenerates the jwt token. Token is
sent as the response from the backend but also saved into the database within the UPDATE or
INSERT sql statement. (Figures 17, 18, 19)
Posts and comments are handled in a very similar way.

Figure 17. Source code for updating access token on the backend (project implementation, source code of
account.ts - source: author’s work)

36

Figure 18. Source code for handling authentication on the backend (project implementation, source code of
authController.ts - source: author’s work)

37

Figure 19. Source code for submitting log in form on the frontend (project implementation, source code of
LoginForm.jsx - source: author’s work)

38

As mentioned previously, after successful authentication user token is created and visible on
the Figure 20 and 21.

Figure 20. Main feed UI for the Viewer - there is no active cookie token (project implementation with developer
tools opened on application/cookies, localhost:3000/ - source: author’s work)

Figure 21. Main feed UI for the User - there is an active cookie token (project implementation with developer
tools opened on application/cookies, localhost:3000/ - source: author’s work)

39

5.2.4. Deleting content

Logged in users can delete both individual posts and individual comments. To explain
the algorithm behind this let us look at the example of deleting a post.
Delete request is sent to the /api/posts/:id including two body parameters - token (browser
cookie token) and post_id. Verification of the browser’s cookie token is handled inside the
deleteById function in postController.ts. Based on the provided request parameters, account
data and post data is fetched from the database. By comparing post.username with
account.username it can be determined whether the holder of that token is also the author of
the post. Only then a deletion query is executed on the database, resulting in deleting given
content.
In contrast to deleting a single comment, deleting a single post results in deleting all the
comments associated with it.

5.3. Database choice

In the process of choosing a database, many solutions available on the market were
tried. Platform started as a mobile application for Android (at the beginning it was called
RemindsMe but due to too strong association with the reminder app it was later renamed).
For this reason, the popular database choice was Google’s Firebase. However, as the author
parted from the idea for a mobile application, Firebase as a database was also abandoned.
Despite that, in the future it is not impossible that the platform will serve as a mobile
application where Firebase will serve as the provider for the user authentication service.

Fed up with the abandonment of Google, the author dedicated himself to finding the
best possible solution which at that time was for me a P2P, decentralized database. After
thorough research GUN was chosen - a decentralized graph database. The choice was not
only considered as a dedication to the technology but most importantly as a dedication to the
vision of its creator Mark Nadal (more on that in the last chapter dedicated to an overview of
the possible enhancements to the platform). Sadly, However, the struggle of incorporating his
solution into the platform and because of the time constraints given to making a presentable
product the technology was once again not implemented into the project.

The willingness of using a graph database was still valid (as it is done by Twitter) so
the next choice was to try Neo4j. This was however a very short journey as the author
realized, it was not so much the graph database as a technology but rather as the idea of
decentralized peer-to-peer network. The author once again failed to deliver on that idea and
returned to the technology known the best among those mentioned so far.
For storing file description in a convenient way, the author relied on the local Postgres
database. In such a relational database, we can easily bind a content (post or comment) to the
corresponding account.

40

The advantage of postgres in the described project relies heavily on the usage of Docker as a
containerization tool. This way the entire infrastructure can be easily mounted with a single
script and the database schema can be recreated (with a helper script) regardless of the host
environment.

Development process with Docker can be somewhat automated by writing scripts that
could set up the development environment with a minimum amount of reconfiguration. For
the reason of efficiency, reusability and maintainability it was wise to create such a shell
script as shown on Figure 22.

41

The script present on the Figure 22 executes subscripts to set up docker environments for the
database, backend and frontend as shown on Figures 23, 24, 25, 26, 27.

Figure 22. Shell script that manages setting up docker development environment (project implementation,
source: author’s work)

42

Figure 23. Docker compose script for the database and database admin panel (project implementation, source:
author’s work)

Figure 24. Docker compose script for the backend (project implementation, source: author’s work)

Figure 25. Dockerfile backend (project implementation, source: author’s work)

43

Figure 26. Docker compose script for the frontend(project implementation, source: author’s work)

Figure 27. Docker compose script for the frontend (project implementation, source: author’s work)

6. The future of the platform
6.1. A detailed look at the rising technologies

6.1.1. Web vs mobile

ShaReCon started as a mobile application, however lack of prior experience in this
area of development led to inefficiency of work within that field. Moreover, neither Flutter
nor any other cross-platform tool increased the efficiency and led to successful development.
Hence, the choice was made that the optimal solution will be a web application made within
the Javascript ecosystem - the one path that the author richly experienced and feels
comfortable working in.

44

The author was, once again, driven by the broad accessibility of the majority of people
having internet on their mobile and home devices. Moreover, it is certain that by using React
to develop the platform the platform will be able to expand its reach by extending to a mobile
version with React Native later on. That being said, by no means is the author ruling out the
possible necessity of learning native mobile language for iOS and/or Android after
completing ShaReCon MVP.

6.1.2. Decentralized vs centralized

Developers should be extremely infatuated with the idea of decentralization. The vision for
ShaReCon is to be a platform providing architecture for sharing media freely, openly
articulating one’s and connecting people. The author does not wish to collect personal data
nor distribute such data to third parties. It is believed that for user convenience, responsibility
of authentication should be distributed across the user and the platform. Every user should be
responsible for his account, however to prevent unfortunate accidents of losing one's
password,the login key could be divided into three parts:
➔ one to be stored by the user, used for every login and able to be regenerated in the event

of being lost
➔ one to be stored in the platform database, able to be reminded if the user forgot it and be

semi-composition of the complete login key
➔ one to be stored only by the user, to be kept in the safe place with little-to-no possibility

of being lost and accessible only offline

These three parts would compose safe, convenient and user-exclusive authentication.
One of the technologies that caught my attention was GUN.js. As described by its creator and
the lead maintainer Mark Nadal “GUN is an Open Source Firebase for JAMstack apps”.[7]
By definition JavaScript, API and HTML (JAM) stack generates static web code in advance.
Before the content is ever requested the code is distributed to a Content Delivery Network
(CDN). Users fetch content from the physically closest server in the shortest time possible.
Dynamic content is available only through API calls from the application.

What is special about GUN is that the data and infrastructure are not centralized by
one entity, instead they are decentralized across the entire user base. At the high level, GUN
stores a small subset of data on each user based on the actual data that they consume in the
application. When a user makes a query for some data it will search across the network for
other users having that data and synchronize it using technologies like WebRTC. Although
GUN relies heavily on cryptography it is not a blockchain technology.

45

“By default, data is stored in the browser’s local storage which is limited to 5MB. In
the event of a user clearing their browser cache, all of the local data will be lost if it is not
persisted somewhere else on the network. To prevent this, a relay server using a radisk
storage mechanism is deployed”[6]. This allows to store a lot more data on the server disk
and makes the network more robust as queries may fall back to a relay server if the data is not
available from another peer. The main advantages of using GUN is that it:
➔ provides a real time p2p state synchronization
➔ is a graph database meaning it provides key-value storage
➔ is local-first, offline and decentralized with end-to-end encryption
➔ creates low-latency illusion

6.1.3. P2P sharding vs compression

For a fast and reliable data sharing system one of two approaches should be taken. One is
already being used throughout the internet - compression. When talking about file sharing
only lossless compression can be taken seriously, because unlike lossy image compression,
files like desktop applications or games cannot be missing any information - otherwise they
may not be usable. “It is sensible to be saving bandwidth by transferring a smaller
(compressed) file across the network at the cost of CPU power (of decompressing such file)
which is generally much cheaper than network bandwidth”[8]. Moreover, considering that
oftentimes the same file will be transferred multiple times it is reasonable to store a smaller
version of it on a server and then make users decompress it on their devices.

P2P sharding however, takes advantage of the whole network by storing small chunks
of the file on each node. By doing so, no compression is necessary (it is optional but not
required) as the file is scattered all over the network making it easily accessible by its owner
at the same time stored securely as each piece is safely encrypted and the file cannot be
recomposed without being decrypted first.

The system that is planned to be implemented into ShaReCon is IPFS. It was
developed in 2015 by Juan Benet, written in Go programming language and has been kept as
an open-source project ever since. “The main difference between IPFS and the current web
file system is that the former operates in a content based addressing. This means that to find a
resource, instead of telling our browser where to find it, we specify what we are looking for.
Not only does it make the content-search reliable as it does not depend on its source website
existence, it also supports versioning of the files just like Git does. This prevents files from
being mutated and keeps the history of the changes so that you can trace back to any version
you wish to access.”[9]

46

6.1.4. UX vs UI

Saying has it that “people consume with their eyes”. It is rarely the case that a poor
performing website will keep newcomers just with a beautiful look. Functionality and
performance is what makes a user return to the platform. Looking at the 4chan example, no
advanced UI is needed to make a website successful. It is recommended to take care of both -
the functionality and the design. Even though most users either do not understand or care
about the implementation of the application it is in great practice to take care of
well-structured code. It is often the case that a badly implemented solution affects the
usability of the project and so the design is affected as well. Out of many libraries attempting
to make CSS easier to deal with, Tailwind seems to be the choice among React developers. It
seems to be the cleanest and the least demanding way to style components in JavaScript. With
its easy to learn acronyms-based syntax and in-line style it gives clear predictions of what will
be displayed.

6.2. Observation vs participation

ShaReCon will not require users to create an account in order to be an observant in a
community. Anyone can go to the ShaReCon website and freely browse through the content.
The minimum viable observation requires paying attention to what’s happening. To
participate however, an observer (viewer) is required to create an account. There are two main
reasons leading to such decision:
1. ease of implementation - managing content created by observers requires different

approaches: How to responsibly log anonymous users in a database? How to
differentiate anonymous authors?

2. user participation - it is believed that for greater user engagement, observers should
register themselves. It creates a sense of involvement in the community. Users are
allowed to create anonymous accounts - unlinked to their true identity. It ultimately
creates a sense of freedom to speak one’s mind freely and disconnect from real life
expectations.

47

7. Summary

As described in this paper, open-source culture is seen as the major path in
development of software. Both the accessibility and collaboration lay in the core of its
practice. Social media platforms have faced a rapid change throughout the years and will
continue to face challenges as more users are becoming mindful and responsible for their
profiles.

The same change affects developers as they need to adapt to the ever growing need of
accessibility and reusability. It is no longer sufficient to make a monolithic app that runs well.
It should be in great interest to provide a multi-environment experience. The development
process shall not be restricted to a single workstation. This approach extends the life of an app
and provides the blueprint for diverse development.

The presented platform is seen as both the practical implementation of the core
software engineering and open-source practices and lays a solid foundation for future
enhancements to the social media connectivity. It is in great interest of the author to further
explore the essence of interaction. As the world keeps on accelerating, it is a duty of
responsible developers to provide meaningful and efficient connectivity opportunities.
Connectivity seems to be the underlying backbone of today’s modern societies and with that
in mind, the author will further explore what it means to connect entities together and what it
means to interact.

48

Bibliography

[1]https://stackoverflow.com/questions/
[2]https://odysee.com/
[3] https://www.npmjs.com/package/multer
[4]https://twitter.com/SamParkerSenate/status/1748951632405201103
[5]https://github.com/twitter/communitynotes
[6]https://thenewstack.io/brendan-eich-on-creating-javascript-in-10-days-and-what-hed-do-differently-today/
[7]The Weird History of JavaScript - https://youtu.be/Sh6lK57Cuk4
[8]https://github.com/imasharc/ShaReCon
[9]https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wanted-webframe-love-dread
[10]https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/#front_end_frameworks_experience_ranki
ng
[11]https://gun.eco/docs/Radisk
[12]https://github.com/amark
[13]How File Compression Works - https://youtu.be/HNPqWaSEMJI
[14]IPFS in 2 minutes - https://youtu.be/k1EQC7tdh70

49

https://stackoverflow.com/questions/
https://odysee.com/
https://www.npmjs.com/package/multer
https://twitter.com/SamParkerSenate/status/1748951632405201103
https://github.com/twitter/communitynotes
https://thenewstack.io/brendan-eich-on-creating-javascript-in-10-days-and-what-hed-do-differently-today/
https://youtu.be/Sh6lK57Cuk4
https://github.com/imasharc/ShaReCon
https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wanted-webframe-love-dread
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/#front_end_frameworks_experience_ranking
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/#front_end_frameworks_experience_ranking
https://gun.eco/docs/Radisk
https://github.com/amark
https://youtu.be/HNPqWaSEMJI
https://youtu.be/k1EQC7tdh70

Figures listing
Figure 1. Stack Overflow (source: https://stackoverflow.com/questions/)
Figure 2. Odysee (source: https://odysee.com/)
Figure 3. Community Note written under a post
(source:https://twitter.com/SamParkerSenate/status/1748951632405201103)
Figure 4. GitHub repository for Community Notes (source: https://github.com/twitter/communitynotes)
Figure 5. Platform architecture (visualized with LucidChar - source: author’s work)
Figure 6a. Directory structure (presented with VS Code - source: author’s work)
Figure 6b. Directory structure (visualized with LucidChart - source: author’s work)
Figure 7a. Functionalities use case diagram (visualized with LucidChart - source: author’s work)
Figure 7b. Functionalities use case diagram implemented by author (visualized with LucidChart - source:
author’s work)
Figure 8. Sequence diagram for registering new user (visualized with LucidChart - source: author’s work)
Figure 9. Sequence diagram for registering new user (visualized with LucidChart - source: author’s work)
Figure 10. Project repository on github (source: author’s work published on
https://github.com/imasharc/ShaReCon)
Figure 11a. Log in form (project implementation, localhost:3000/login - source: author’s work)
Figure 11b. Sign up form (project implementation, localhost:3000/signup - source: author’s work)
Figure 12. Checking availability of the username (project implementation, source code - source: author’s work)
Figure 13. Regex patterns for sign up form (project implementation, source code - source: author’s work)
Figure 14a. Invalid sign up form (project implementation with developer tools opened on application/cookies,
localhost:3000/login - source: author’s work)
Figure 14b. Handling authentication on the backend (image generated with https://carbon.now.sh/; project
implementation of the authentication mechanism, localhost:3001/login - source: author’s work)
Figure 15a. Specifying API routes for authentication endpoints (project implementation of the server side -
source: author’s work, screenshot of the source code)
Figure 15b. Specifying API routes for account functionalities endpoints (project implementation of the server
side - source: author’s work, screenshot of the source code)
Figure 15c. Specifying API routes for comment functionalities endpoints (project implementation of the server
side - source: author’s work, screenshot of the source code)
Figure 15d. Specifying API routes for post functionalities endpoints (project implementation of the server side -
source: author’s work, screenshot of the source code)
Figure 15e. Server configuration on the backend (image generated with https://carbon.now.sh/; project
implementation of the server side - source: author’s work)
Figure 16a. Updated token in the database (project implementation pgadmin panel, localhost:5050 - source:
author’s work)
Figure 16b. Cookie token present in the browser after successful sign in (project implementation with developer
tools opened on application/cookies, localhost:3000/login - source: author’s work)
Figure 16c. 1/2 part of the accountController functionality (image generated with https://carbon.now.sh/; project
implementation - source: author’s work)
Figure 16d. 2/2 part of the accountController functionality (image generated with https://carbon.now.sh/; project
implementation - source: author’s work)
Figure 17. Source code for updating access token on the backend (project implementation, source code of
account.ts - source: author’s work)
Figure 18. Source code for handling authentication on the backend (project implementation, source code of
authController.ts - source: author’s work)
Figure 19. Source code for submitting log in form on the frontend (project implementation, source code of
LoginForm.jsx - source: author’s work)
Figure 20. Main feed UI for the Viewer - there is no active cookie token (project implementation with developer
tools opened on application/cookies, localhost:3000/ - source: author’s work)
Figure 21. Main feed UI for the User - there is an active cookie token (project implementation with developer
tools opened on application/cookies, localhost:3000/ - source: author’s work)

50

https://stackoverflow.com/questions/
https://odysee.com/
https://github.com/twitter/communitynotes
https://github.com/imasharc/ShaReCon

Figure 22. Shell script that manages setting up docker development environment (project implementation,
source: author’s work)
Figure 23. Docker compose script for the database and database admin panel (project implementation, source:
author’s work)
Figure 24. Docker compose script for the backend (project implementation, source: author’s work)
Figure 25. Dockerfile backend (project implementation, source: author’s work)
Figure 26. Docker compose script for the frontend(project implementation, source: author’s work)
Figure 27. Docker compose script for the frontend(project implementation, source: author’s work)

51

